série n°19

Exercice n°1:

Soit l'équation différentielle (E): $y' - 2y = e^{-x}$

1) Soit f une solution de E

a- Calculer
$$I = \int_0^1 e^{-x} dx$$

$$b - Montrer \, que \int_{0}^{1} f(x) \, dx = \frac{1}{2} \left(f(1) - f(0) \right) - \frac{1}{2} I$$

c-Posons g(x) = 2f(x). Calculer l'aire de la partie du plan limitée par Cg. Cf' et les droites d'équations x = 0 et x = 1

- 2) Résoudre l'équation $(E_0): y'-2y=0$
- Déterminer le réel a pour que la fonction g définie par g(x) = ae^{-x} soit une solution de (E)
- 4) Montrer que f est une solution de (E) SSI (f-g) est une solution de (E_0)
- 5) Déterminer alors l'ensemble des solutions de (E)

Exercice n°2:

Le tableau ci-dessous donne les effectifs d'une série statistique double.

X_i	14	20	28	30	36	45	50
y_i	8	10	17	23	29	32	40

- 1) Appliquer la méthode de Mayer pour déterminer un ajustement affine de cette série statistique double.
- 2)a) Construire son nuage de points, dans un repère orthogonal.
 - b) Tracer cette droite de Mayer.
- 3) Calculer les coordonnées du point moyen G du nuage.
- 4) Vérifier que G appartient à la droite (G_1G_2) .
- 5) Donner une estimation de y pour x = 80

Exercice n°3:(bac)

Le rendement R d'une variété en blé (en quintaux par hectare) et la quantité E d'engrais azotés (en kilogrammes par hectare) utilisée pendant la culture sont indiqués dans le tableau suivant :

E(kg/ha)	E(kg/ha) 50		70	80	90	
R (q/ ha)	35 ,7	41,4	45,7	47,2	50,8	

- 1/ Calculer le coefficient de corrélation linéaire du couple (E,R). Que peut-on en déduire ?
- 2/ Déterminer une équation cartésienne de la droite de régression de R en E
- 3/ Quel rendement peut-on prévoir pour une culture utilisant une quantité d'engrais azotés E = 100 kg/ha ?

Exercice n°4:

Le tableau suivant donne représente l'évolution du chiffre d'affaire en milliers de dinars d'une entreprise pendant dix années.

Année	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
Rang de l'année x_i	0	1	2	3	4	5	6	7	8	9
Chiffre d'affaires y_i	110	130	154	180	190	210	240	245	270	295

- 1)Représenter le nuage de points $M_i(x_i; y_i)$.
- 2) Quel est, en pourcentage, l'augmentation du chiffre d'affaires entre les années 2000 et 2009 ?
- 3) Soit G le point moyen du nuage. Calculer les coordonnées de G et placer G sur le dessin.
- 5)a) Justifier qu'il est judicieux de procéder pour cette série à un ajustement affine.
 - b) Donner l'équation de la droite d'ajustement D obtenue par la méthode des moindres carrés.
 - c) Vérifier que G appartient à la droite D et tracer D sur le dessin.
- 6) En admettant que l'évolution continue au même rythme et en utilisant l'ajustement affine, quel chiffre d'affaires peut-on atteindre pour l'année 2011 ?
- 7) On suppose qu'à partir de l'année 2009, le chiffre d'affaires progresse de 10% par an. Quel est alors le chiffre d'affaires prévisible en 2011 ?

Exercice N°5

Le tableau suivant indique les dépenses annuelles en énergie électrique d'une usine de 2003 à 2009.

Année	2003	2004	2005	2006	2007	2008	2009
Rang de l'année : x _i	1	2	3	4	5	6	7
Dépense en milliers	18	24	33	48	72	96	126
de DT : y _i							

- 1/a) Construire dans un repère orthogonale le nuage de points, de la série (x_i,y_i)
 - b) Le nuage obtenu permet il d'envisager un ajustement exponentiel ?
- 2/a) Recopier et compléter le tableau ci-dessous (les résultats seront arrondis à 10⁻² près)

X _i	1	2	3	4	5	6	7
$Z_i = ln(y_i)$	2,89						

- b) Calculer le coefficient de corrélation de la série (x,z)
- c) Donné une équation de la droite de régression de z en x
- 3/a) Exprimer alors y en fonction de x
 - b) Estimer, la dépense en 2011